

ADVANCED GCE

MATHEMATICS Core Mathematics 3 4723

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None Thursday 15 January 2009 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Find

(i)
$$\int 8e^{-2x} dx$$
,
(ii) $\int (4x+5)^6 dx$. [5]

2 (i) Use Simpson's rule with four strips to find an approximation to

$$\int_{4}^{12} \ln x \, \mathrm{d}x,$$

giving your answer correct to 2 decimal places.

(ii) Deduce an approximation to
$$\int_{4}^{12} \ln(x^{10}) dx$$
. [1]

3 (i) Express
$$2\tan^2\theta - \frac{1}{\cos\theta}$$
 in terms of $\sec\theta$. [3]

(ii) Hence solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$2\tan^2\theta - \frac{1}{\cos\theta} = 4.$$
 [4]

[4]

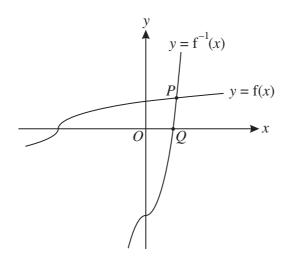
[2]

[3]

4 For each of the following curves, find $\frac{dy}{dx}$ and determine the exact *x*-coordinate of the stationary point:

(i)
$$y = (4x^2 + 1)^5$$
, [3]

(ii)
$$y = \frac{x^2}{\ln x}$$
. [4]


5 The mass, M grams, of a certain substance is increasing exponentially so that, at time t hours, the mass is given by

$$M = 40e^{kt}$$
,

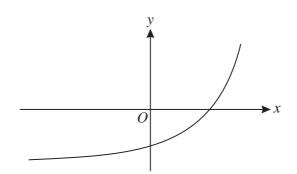
where k is a constant. The following table shows certain values of t and M.

t	0	21	63
М		80	

- (i) In either order,
 - (a) find the values missing from the table, [3]
 - (b) determine the value of k.
- (ii) Find the rate at which the mass is increasing when t = 21.

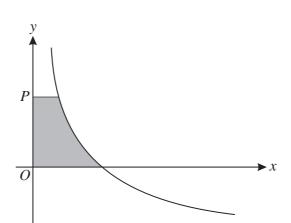
The function f is defined for all real values of x by

$$f(x) = \sqrt[3]{\frac{1}{2}x + 2}$$


The graphs of y = f(x) and $y = f^{-1}(x)$ meet at the point *P*, and the graph of $y = f^{-1}(x)$ meets the *x*-axis at *Q* (see diagram).

- (i) Find an expression for $f^{-1}(x)$ and determine the *x*-coordinate of the point *Q*. [3]
- (ii) State how the graphs of y = f(x) and $y = f^{-1}(x)$ are related geometrically, and hence show that the *x*-coordinate of the point *P* is the root of the equation

$$x = \sqrt[3]{\frac{1}{2}x + 2}.$$
 [2]


(iii) Use an iterative process, based on the equation $x = \sqrt[3]{\frac{1}{2}x + 2}$, to find the *x*-coordinate of *P*, giving your answer correct to 2 decimal places. [4]

7

The diagram shows the curve $y = e^{kx} - a$, where k and a are constants.

- (i) Give details of the pair of transformations which transforms the curve $y = e^x$ to the curve $y = e^{kx} a$. [3]
- (ii) Sketch the curve $y = |e^{kx} a|$. [2]
- (iii) Given that the curve $y = |e^{kx} a|$ passes through the points (0, 13) and (ln 3, 13), find the values of k and a. [4]

4

The diagram shows the curve with equation

$$y = \frac{6}{\sqrt{x}} - 3.$$

The point *P* has coordinates (0, p). The shaded region is bounded by the curve and the lines x = 0, y = 0 and y = p. The shaded region is rotated completely about the *y*-axis to form a solid of volume *V*.

(i) Show that
$$V = 16\pi \left(1 - \frac{27}{(p+3)^3}\right)$$
. [6]

(ii) It is given that *P* is moving along the *y*-axis in such a way that, at time *t*, the variables *p* and *t* are related by

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{1}{3}p + 1.$$

Find the value of $\frac{dV}{dt}$ at the instant when p = 9.

9 (i) By first expanding $\cos(2\theta + \theta)$, prove that

$$\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta.$$
 [4]

(ii) Hence prove that

$$\cos 6\theta \equiv 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1.$$
 [3]

(iii) Show that the only solutions of the equation

$$1 + \cos 6\theta = 18 \cos^2 \theta$$

are odd multiples of 90° .

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[4]

[5]

4723 Core Mathematics 3

4723

1 (i) (ii)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$ Obtain integral of form $k(4x+5)^7$	M1 A1 M1		any constant <i>k</i> different from 8 or (unsimplified) equiv any constant <i>k</i>
(II)	Obtain $\frac{1}{28}(4x+5)^7$ Include + c at least once	A1 B1	5	in simplified form in either part
2 (i) (ii)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27 State 162.7 or 163	A1 A1		with coeffs 1, 4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164) following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan^2 \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain $2(\sec^2 \theta - 1) - \sec \theta$	M1 B1 A1	3	using $\pm \sec^2 \theta \pm 1$; or equiv or equiv
 (ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain 60°, 131.8° Obtain 60°, 131.8°, 228.2°, 300°		4 7	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $kx(4x^2 + 1)^4$ Obtain $40x(4x^2 + 1)^4$ State $x = 0$	M1 A1 A1v	3	any constant k or (unsimplified) equiv and no other; following their derivative of form $kx(4x^2 + 1)^4$
(ii)	Attempt use of quotient rule Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$ Equate to zero and attempt solution Obtain $e^{\frac{1}{2}}$	M1 A1 M1 A1	4 7	or equiv or equiv as far as solution involving e or exact equiv; and no other; allow from ± (correct numerator of derivative)

Mark Scheme

5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320	B1 M1 A1 M1 A1	5	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this
(ii)	Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	M1 A1v A1		any constant <i>c</i> different from 40 following their value of <i>k</i> allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $\sqrt[3]{2}$ or 1.26	M1 A1 B1	3	maybe in terms of y so far or equiv; in terms of x now
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv AG; or equiv
(iii)	Obtain correct first iterateB1Show correct process for iterationM1with at least one more stepObtain at least 3 correct iterates in allA1allowing recovery after errorObtain 1.39A14following at least 3 steps; answer require to exactly 2 d.p. $[0 \rightarrow 1.259921 \rightarrow 1.380330 \rightarrow 1.390784 \rightarrow 1.391684$ $1 \rightarrow 1.357209 \rightarrow 1.388789 \rightarrow 1.391512 \rightarrow 1.391747$ $1.26 \rightarrow 1.380337 \rightarrow 1.390784 \rightarrow 1.391684 \rightarrow 1.391761$ $1.5 \rightarrow 1.401020 \rightarrow 1.392564 \rightarrow 1.391837 \rightarrow 1.391775$ $2 \rightarrow 1.442250 \rightarrow 1.396099 \rightarrow 1.392141 \rightarrow 1.391801]$		allowing recovery after error following at least 3 steps; answer required to exactly 2 d.p. 1.391684 1.391747 → 1.391761 → 1.391775	
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by <i>a</i> [SC: If M0 but one transformation complete	ely co	rrec	t – B1]
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1		ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii)	Attempt method with $x = 0$ to find value of a Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	aM1 A1 M1 A1	4	other than (or in addition to) value -12 and nothing else using any numerical <i>a</i> with sound process

4723

Mark Scheme

8 (i)	Attemp	t to express x or x^2 in terms of y	M1		
		$x^2 = \frac{1296}{(y+3)^4}$	A1		or (unsimplified) equiv
		integral of form $k(y+3)^{-3}$	M1		any constant k
		$-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	A1		or (unsimplified) equiv
		t evaluation using limits 0 and p	M1		for expression of form $k(y+3)^{-n}$ obtained
					from integration attempt; subtraction correct way round
	Confirm	n $16\pi(1-\frac{27}{(p+3)^3})$	A1	6	AG; necessary detail required, including
		(p+3)			appearance of π prior to final line
(ii)	State or	obtain $\frac{dV}{dp} = 1296\pi (p+3)^{-4}$	B1		or equiv; perhaps involving y
	Multipl	y $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$	*M1	l	algebraic or numerical
		te $p = 9$ and attempt evaluation	M1		dep *M
	Obtain	$\frac{1}{4}\pi$ or 0.785	A1	4	or greater accuracy
				10	
9 (i)	State c	$\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	B1		
		east one of $\cos 2\theta = 2\cos^2 \theta - 1$			
		$\sin 2\theta = 2\sin \theta \cos \theta$ t to express in terms of $\cos \theta$ only	B1 M1		using correct identities for
	F	· · · · · · · · · · · · · · · · · · ·			$\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$
	Obtain	$4\cos^3\theta - 3\cos\theta$	A1	4	AG; necessary detail required
(ii)	Either:	State or imply $\cos 6\theta = 2\cos^2 3\theta -$	1B1		
		Use expression for $\cos 3\theta$ and attempt expansion	M1		for expression of form $\pm 2\cos^2 3\theta \pm 1$
		Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1	3	AG; necessary detail required
	<u>Or</u> :	State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$	B1		maybe implied
		Express $\cos 2\theta$ in terms of $\cos \theta$			
		and attempt expansion Obtain $32c^6 - 48c^4 + 18c^2 - 1$	M1	(2)	for expression of form $\pm 2\cos^2\theta \pm 1$ AG; necessary detail required
			A1	(3)	
(iii)		the for $\cos 6\theta$	*M1		with simplification attempted
		$32c^6 - 48c^4 = 0$ t solution for <i>c</i> of equation	A1 M1		or equiv dep *M
	-	-	A1		or equiv; correct work only
	Obtain	$c^2 = \frac{3}{2}$ and observe no solutions	711		of equiv, confect work only
	Obtain	c = 0, give at least three specific		_	
	Obtain	-	A1	5	AG; or equiv; necessary detail required; correct work only